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To resolve the issues of limited labeled samples and cross-domain 
feature adaptation in HSI classification, a Multi-model Fusion 
Network (MMF-Net) based on transfer learning is proposed, as 
illustrated in Fig. 1. MMF-Net is structured around four key 
components: (1) channel adaptation mapping, (2) multi-model 
feature extraction, (3)attention-weighted fusion（Fig.2), and (4) 
classifier design.

METHODOLOG

    Deep learning has demonstrated outstanding performance in 
hyperspectral image (HSI) classification. However, its generalization 
ability is limited by the high cost of annotations and strong cross-
scene heterogeneity. To address these challenges, this paper 
proposes a multi-model fusion network (MMF-Net) based on 
transfer learning. First, a linear mapping layer is used to convert HSI 
data into a three-channel representation to mitigate the modality 
gap between the source domain (ImageNet) and the target domain 
(HSI). Then, three heterogeneous pre-trained models—Inception, 
VGG16, and Xception—are fine-tuned, with a channel attention 
mechanism incorporated to enhance discriminative features. Finally, 
high-level semantic features from multiple models are fused to 
construct a joint spectral-spatial-semantic representation, and a 
lightweight logistic regression classifier is employed for efficient 
pixel-wise classification. 
     Experimental results show that the proposed method achieves 
good classification performance and generalization ability even 
with limited samples.  

ABSTRACT

l Compared to traditional shallow models, deep networks can more 
effectively utilize high-level nonlinear feature representations. 

l  However, these algorithms may encounter overfitting issues 
during training, require large amounts of data, and are time 
consuming. Data scarcity is a key factor contributing to these 
challenges.

l Contribution:
1. In the feature extraction stage, three existing CNN pre-trained 

models were selected and fine-tuned using transfer learning 
2.  An attention mechanism was introduced to adaptively reweight 

feature maps.

INTRODUCTION

Method EMP-SVM VGG16 Inception Xception T-CNN MMF-Net
OA(%) 86.95 87.37 78.96 82.75 92.71 95.77
AA(%) 87.56 91.36 79.23 83.54 89.43 93.73
k ×100 85.51 86.15 80.33 84.16 91.61 94.62
Training 

Time 3.72 29.99 63.49 141.75 8.23 20.44

Test 
Time 2.30 83.25 88.42 66.96 6.49 85.84

Table 1.  Classification results on the SA dataset using 10% of the 
training samples.

    To address the challenges of limited labeled samples and cross-
domain feature adaptation in HSI classification, this paper 
proposes a Multi-Model Fusion Network (MMF-Net) based on 
transfer learning. The network efficiently transfers the ImageNet 
pre-trained models to the HSI domain through learnable mapping 
layers, combining Inception, VGG16, and Xception multi-model 
parallel fine-tuning strategies to extract complementary features. A 
channel attention mechanism is used to dynamically calibrate 
cross-domain feature responses, and finally, a cascade fusion is 
applied to construct a discriminative joint representation.   
    Experimental results show that MMF-Net achieves significant 
performance improvements on the Salinas, Pavia, and KSC datasets. 
Compared to existing methods, MMF-Net demonstrates superior 
performance, validating its effectiveness and advantages in transfer 
learning tasks.

Fig. 1 The proposed MMF-Net model structure.

Fig. 2 Channel Attention Block.

Method EMP-SVM VGG16 Inception Xception T-CNN MMF-Net
OA(%) 92.62 95.91 90.12 93.26 95.41 99.13
AA(%) 88.26 93.74 89.61 90.28 93.30 98.74
k ×100 91.94 94.57 90.02 93.21 94.96 99.21
Training 

Time 5.57 31.17 115.34 19.91 10.67 25.48

Test 
Time 1.70 8.09 6.12 8.83 1.94 4.80

Table 2.  Classification results on the KSC dataset using 10% of the 
training samples.
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