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ABSTRACT

Deep learning has demonstrated outstanding performance in
hyperspectral image (HSI) classification. However, its generalization
ability is limited by the high cost of annotations and strong cross-
scene heterogeneity. To address these challenges, this paper
proposes a multi-model fusion network (MMF-Net) based on
transfer learning. First, a linear mapping layer is used to convert HSI
data into a three-channel representation to mitigate the modality
gap between the source domain (ImageNet) and the target domain
(HSI). Then, three heterogeneous pre-trained models—Inception,
VGG16, and Xception—are fine-tuned, with a channel attention
mechanism incorporated to enhance discriminative features. Finally,
high-level semantic features from multiple models are fused to
construct a joint spectral-spatial-semantic representation, and a
lightweight logistic regression classifier is employed for efficient
pixel-wise classification.

Experimental results show that the proposed method achieves
good classification performance and generalization ability even
with limited samples.

INTRODUCTION

® Compared to traditional shallow models, deep networks can more

effectively utilize high-level nonlinear feature representations.

® However, these algorithms may encounter overfitting issues
during training, require large amounts of data, and are time
consuming. Data scarcity is a key factor contributing to these
challenges.

® Contribution:

1. In the feature extraction stage, three existing CNN pre-trained
models were selected and fine-tuned using transfer learning

2. An attention mechanism was introduced to adaptively reweight
feature maps.

METHODOLOGY

To resolve the issues of limited labeled samples and cross-domain
feature adaptation in HSI classification, a Multi-model Fusion
Network (MMF-Net) based on transfer learning is proposed, as
illustrated in Fig. 1. MMF-Net is structured around four key
components: (1) channel adaptation mapping, (2) multi-model
feature extraction, (3)attention-weighted fusion (Fig.2), and (4)
classifier design.
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\ Fig. 1 The proposed MMF-Net model structure. /
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RESULTS

Table 1. Classification results on the SA dataset using 10% of the
training samples.

Method |EMP-SVM| VGG16
OA(%)
AA(%)
k x100

Inception | Xception | T-CNN | MMF-Net

Training
Time
Test
Time

Table 2. Classification results on the KSC dataset using 10% of the
training samples.

Method EMP-SVM | VGG16
OA(%)
AA (%)

Inception | Xception | T-CNN | MMF-Net

k x100

Training
Time
Test
Time

To address the challenges of limited labeled samples and cross-
domain feature adaptation in HSI classification, this paper
proposes a Multi-Model Fusion Network (MMF-Net) based on
transfer learning. The network efficiently transfers the ImageNet
pre-trained models to the HSI domain through learnable mapping
layers, combining Inception, VGG16, and Xception multi-model
parallel fine-tuning strategies to extract complementary features. A
channel attention mechanism is used to dynamically calibrate
cross-domain feature responses, and finally, a cascade fusion is
applied to construct a discriminative joint representation.

Experimental results show that MMF-Net achieves significant
performance improvements on the Salinas, Pavia, and KSC datasets.
Compared to existing methods, MMF-Net demonstrates superior
performance, validating its effectiveness and advantages in transfer
learning tasks.
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