Research on Gap Measurement Method Based on 3D Laser Scanning Technology

Youtao Shao^a, Zhiqiang Yin^b, Jiefeng Jiang^a ^aSchool of Engineering, Hangzhou Normal University, Hangzhou 311121, China ^bGeely Automobile Research Institute (Ningbo) Co.,Ltd.,Ningbo 315336,China

Introduction

Background

 Traditional aircraft assembly gap measurement methods (e.g., feeler gauges) suffer from insufficient accuracy (large average errors), low efficiency (reliance on manual expertise), and difficulty in measuring complex structures.

Data Acquisition

- Device: ZCSCAN-K30 handheld laser scanner (0.02mm accuracy).
- Workflow:
- **Environmental stabilization** (temperature/humidity/lighting control).

Results

Key Data

Metric	Value
Average absolute error	0.140 mm

Manufacturing deviations in composite materials lead to assembly gaps, necessitating efficient and precise measurement technologies.

Technical Status

- Advantages of 3D laser scanning: Non-contact, high precision (0.02mm), high efficiency (650,000 points/sec scanning speed).
- Reverse engineering applications in aerospace: High-precision 3D model reconstruction from point cloud data (e.g., Geomagic Design X).

Research Gap

Existing reverse engineering studies lack specific applications for aircraft assembly gap measurement.

Aim

Develop a gap measurement method based on 3D laser scanning and reverse engineering to achieve:

Efficient measurement of gaps in complex structures (reduced assembly cycle time).

- Positioning marker placement (minimum 30mm spacing).
- Multi-angle scanning (front/back surfaces + assembled components).

ZCSCAN-K30 Handheld 3D Laser Scanner and Parameter.

ZCSCAN-K30 Handheld 3D Laser Scanner and Parameter.

Reverse Modeling

Average relative error	6.76%
Maximum point error	0.216 mm
Minimum point error	0.064 mm

Error Distribution

- Largest errors in Cross-section 1 (avg. 9.19%), smallest in Cross-section 3 (avg. 4.42%).
- Outliers at Points 5/10/15 (attributed to machining errors or material warping).

Engineering Applicability

- Meets aerospace industry tolerance standard (0.2mm error threshold).
- Efficiency improvement over traditional methods (eliminates disassembly iterations).

Conclusion

Technical Advantages

- Improved measurement accuracy (target error ≤0.2mm).
- Digital quality control for assembly processes (supporting aerospace manufacturing needs).

Method

Sample Preparation

- Resin-based carbon fiber plate (simulating aircraft skin).
- Aluminum alloy plate with arc-shaped groove (max depth 2.2mm).
- Bolted connection to replicate assembly conditions.
 - Component 1: Resin-based Carbon Fiber Composite Material Plate

Component 1 Reference Markers

- Software: Geomagic Design X. \bullet
- Key Steps:
 - KNN adaptive filtering for noise removal.
 - Marker-based alignment (X-Y-Z coordinate system).
 - Region segmentation (sensitivity parameter: 15).
 - Solid modeling.

Gap Model. **Gap Measurement**

Software: PolyWorks.

Method: Extract 15 measurement points across 3 cross-sections, calculate Euclidean distances.

- Non-contact rapid measurement for complex gaps (650,000 points/sec scanning).
- Accuracy meets engineering requirements (avg. error <0.2mm).

Practical Value

- Supports digital assembly workflows (point cloud \rightarrow solid model \rightarrow automated measurement).
- Reduces manufacturing costs (minimizes manual intervention and rework).

Future Work

- Optimize machining stability to reduce sample errors.
- Develop automated error compensation algorithms.

References

[1] Gong, H. J., Zhou, T., Li, H., et al., "Reverse Modeling and Die Casting Die Design of Aluminum Alloy Parts Based on Geomagic," Foundry 17(6), 596-601 (2020).

Component 2 Reference Markers Component 2: Aluminum Alloy Plate Desktop Reference Markers Composite Material Plate and Aluminum Alloy Plate.

Assembly Model and Theoretical Digital Model.

[2] Wang, D. C., Wang, Y., Liu, S. L., et al., "Optimisation of the column structure of a small drilling machine based on reverse engineering," Manufacturing Technology & Machine Tool 44(3), 94–101 (2024).

Acknowledgements

This research is supported by Oversea Study Fellowship from the China Scholarship Council (Grant no. 201908330633) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG18E050018).